NWG: PAGE – Past, Present and Future Glacier Evolution in the Tropical Andes
Glaciers and ice caps outside the polar ice sheets are strongly affected by climate change, and various observables are defined as essential climate variables. Glacier shrinkage has local to regional-scale impacts on hydrology, ecosystems, and society. In the Tropical Andes, the glaciers pose an important water resource and significantly contribute to the local and regional water supply, especially during the dry season and drought periods. Moreover, glacier retreat increases the risk of glacier lake outburst floods putting downstream communities at risk. To improve future water management and risk assessment as well as to evaluate the impact of climate variations, region-wide and detailed information on the past, present, and future glacier evolution in the Tropical Andes is required. Current glacier mass change estimates have spatiotemporal limitations and often considerable uncertainties, while regional projections, carried out within global analyses, show partly ambiguous trends.
This project aims to overcome these deficiencies by comprehensively analyzing the Tropical Andes‘ past, present, and future glacier evolution. An improved regional assessment of current and future glacier changes will be conducted based on an innovative combination of multi-mission remote sensing data, in-situ measurements, and glacier and hydrological modeling. In combination with data on past glacier changes, which are obtained by exploiting unique remote sensing archives, the evaluation of the long-term trend and its relation with climate change will be facilitated. By assimilating the new remote sensing products and in-situ observations into an ice-dynamic model inversion, highly improved ice volume distribution information will be generated. Projections of glacier evolution for the Tropical Andes until 2100 using mass balance modeling, optimized for the tropics, and fully 3-dimensional glacier modeling will be conducted to overcome the shortcomings of existing global estimates. Those activities will facilitate the subsequent study of the glacier lakes evolution and the glacier meltwater contribution to catchment runoff.
The outcomes of this project will include novel and improved regional information regarding the glacier evolution in the Tropical Andes and methodological advances. These comprise (1) region-wide enhanced quantification of the ongoing glacier changes, the evaluation of its long-term trend and correlation with climatic variations, (2) development of innovative remote sensing and modeling techniques, (3) improved ice thickness information and projections of glacier and runoff evolution using fully coupled, 3D-distributed and optimized modeling.
- Multi-sensor remote sensing
- InSAR techniques
- Altimetry
- Photogrammetric analysis (historical and recent data)
- GPR measurements
- Aerial surveys
- Machine-Learning for glacier monitoring
Junior Research Group Leader:
Dr. Thorsten Seehaus
Department Geographie und Geowissenschaften
Institut für Geographie
- Telefon: +49 9131 85-23303
- E-Mail: thorsten.seehaus@fau.de
PAGE-project staff:
Diego Pacheco Ferrada
Department Geographie und Geowissenschaften
Institut für Geographie
- Telefon: +49 9131 85-22510
- E-Mail: diego.pacheco@fau.de
Add-on-Projects:
Dakota Pyles, M.Sc.
Department Geographie und Geowissenschaften
Institut für Geographie
- Telefon: +49 9131 85-22510
- E-Mail: dak.pyles@fau.de
Vijaya Kumar Thota
Department Geographie und Geowissenschaften
Institut für Geographie
- Telefon: +49 9131 85-22463
- E-Mail: vijaya.kumar.thota@fau.de
LASSI: Large-scale Automatic Calving Front Segmentation and Frontal Ablation Analysis of Arctic Glaciers using Synthetic-Aperture Radar Image Sequences, DFG
UNLOC: Unlocking the glaciological information of historical aerial imagery to obtain long-term glacier mass balance information and to identify drivers of glacier changes on the Antarctic Peninsula, DFG
2025
- Gourmelon, N., Dreier, M.N., Mayr, M., Seehaus, T., Pyles, D.R., Braun, M.,... Christlein, V. (2025). SSL4SAR: Self-Supervised Learning for Glacier Calving Front Extraction from SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2025.3580945
 DOI: 10.1109/TGRS.2025.3580945
 BibTeX: Download
- Shahateet, K., Fürst, J., Navarro, F., Seehaus, T., Farinotti, D., & Braun, M. (2025). A reconstruction of the ice thickness of the Antarctic Peninsula Ice Sheet north of 70° S. Cryosphere, 19(4), 1577-1597. https://doi.org/10.5194/tc-19-1577-2025
 DOI: 10.5194/tc-19-1577-2025
 BibTeX: Download
- Zemp, M., Jakob, L., Dussaillant, I., Nussbaumer, S.U., Gourmelen, N., Dubber, S.,... Zheng, W. (2025). Community estimate of global glacier mass changes from 2000 to 2023. Nature, 639, 382-388. https://doi.org/10.1038/s41586-024-08545-z
 DOI: 10.1038/s41586-024-08545-z
 BibTeX: Download
2024
- Lutz, K., Bever, L., Sommer, C., Seehaus, T., Humbert, A., Scheinert, M., & Braun, M. (2024). Assessing supraglacial lake depth using ICESat-2, Sentinel-2, TanDEM-X, and in situ sonar measurements over Northeast and Southwest Greenland. Cryosphere, 18(11), 5431-5449. https://doi.org/10.5194/tc-18-5431-2024
 DOI: 10.5194/tc-18-5431-2024
 BibTeX: Download
- Piermattei, L., Zemp, M., Sommer, C., Brun, F., Braun, M., Andreassen, L.M.,... Yang, R. (2024). Observing glacier elevation changes from spaceborne optical and radar sensors - an inter-comparison experiment using ASTER and TanDEM-X data. Cryosphere, 18(7), 3195-3230. https://doi.org/10.5194/tc-18-3195-2024
 DOI: 10.5194/tc-18-3195-2024
 BibTeX: Download
- Wu, F., Gourmelon, N., Seehaus, T., Zhang, J., Braun, M., Maier, A., & Christlein, V. (2024). Contextual HookFormer for Glacier Calving Front Segmentation. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-15. https://doi.org/10.1109/TGRS.2024.3368215
 DOI: 10.1109/TGRS.2024.3368215
 URL: https://ieeexplore.ieee.org/document/10440599
 BibTeX: Download
2023
- Herrmann, O., Gourmelon, N., Seehaus, T., Maier, A., Fürst, J., Braun, M., & Christlein, V. (2023). Out-of-the-box Calving Front Detection Method Using Deep Learning. Cryosphere, 17, 4957–4977. https://doi.org/10.5194/tc-17-4957-2023
 DOI: 10.5194/tc-17-4957-2023
 BibTeX: Download
- Koch, M., Seehaus, T., Friedl, P., & Braun, M. (2023). Automated Detection of Glacier Surges from Sentinel-1 Surface Velocity Time Series-An Example from Svalbard. Remote Sensing, 15(6). https://doi.org/10.3390/rs15061545
 DOI: 10.3390/rs15061545
 BibTeX: Download
- Seehaus, T., Sommer, C., Dethinne, T., & Malz, P. (2023). Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017. Cryosphere, 17(11), 4629-4644. https://doi.org/10.5194/tc-17-4629-2023
 DOI: 10.5194/tc-17-4629-2023
 BibTeX: Download
- Shahateet, K., Navarro, F., Seehaus, T., Fürst, J., & Braun, M. (2023). Estimating ice discharge of the Antarctic Peninsula using different ice-thickness datasets. Annals of Glaciology, 1-12. https://doi.org/10.1017/aog.2023.67
 DOI: 10.1017/aog.2023.67
 BibTeX: Download
- Temme, F., Farías Barahona, D., Seehaus, T., Janã, R., Arigony-Neto, J., Gonzalez, I.,... Fürst, J. (2023). Strategies for regional modeling of surface mass balance at the Monte Sarmiento Massif, Tierra del Fuego. Cryosphere, 17(6), 2343--2365. https://doi.org/10.5194/tc-17-2343-2023
 DOI: 10.5194/tc-17-2343-2023
 URL: https://tc.copernicus.org/articles/17/2343/2023/
 BibTeX: Download
- Wu, F., Gourmelon, N., Seehaus, T., Zhang, J., Braun, M., Maier, A., & Christlein, V. (2023). AMD-HookNet for Glacier Front Segmentation. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-12. https://doi.org/10.1109/TGRS.2023.3245419
 DOI: 10.1109/TGRS.2023.3245419
 URL: https://ieeexplore.ieee.org/document/10044700
 BibTeX: Download
- Zuhr, A.M., Loebel, E., Muchow, M., Dennis, D., von Albedyll, L., Kruse, F.,... Scheinert, M. (2023). Insights into German polar research during POLARSTUNDE. Polarforschung, 91, 73-80. https://doi.org/10.5194/polf-91-73-2023
 DOI: 10.5194/polf-91-73-2023
 BibTeX: Download
2022
- Davari, A., Baller, C., Seehaus, T., Braun, M., Maier, A., & Christlein, V. (2022). Pixel-wise Distance Regression for Glacier Calving Front Detection and Segmentation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10. https://doi.org/10.1109/TGRS.2022.3158591
 DOI: 10.1109/TGRS.2022.3158591
 URL: https://arxiv.org/pdf/2103.05715
 BibTeX: Download
- Gourmelon, N., Seehaus, T., Braun, M., Maier, A., & Christlein, V. (2022). Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery. Earth System Science Data, 14(9), 4287--4313. https://doi.org/10.5194/essd-14-4287-2022
 DOI: 10.5194/essd-14-4287-2022
 URL: https://essd.copernicus.org/articles/14/4287/2022/
 BibTeX: Download
- Luo, J., Ke, C.-Q., & Seehaus, T. (2022). The West Kunlun Glacier Anomaly and Its Response to Climate Forcing during 2002–2020. Remote Sensing, 14, 3465. https://doi.org/10.3390/rs14143465
 DOI: 10.3390/rs14143465
 BibTeX: Download
- Nambiar, K.G., Morgenshtern, V., Hochreuther, P., Seehaus, T., & Braun, M. (2022). A Self-Trained Model for Cloud, Shadow and Snow Detection in Sentinel-2 Images of Snow- and Ice-Covered Regions. Remote Sensing, 14, 1825. https://doi.org/10.3390/rs14081825
 DOI: 10.3390/rs14081825
 BibTeX: Download
- Periyasamy, M., Davari, A., Seehaus, T., Braun, M., Maier, A., & Christlein, V. (2022). How to Get the Most Out of U-Net for Glacier Calving Front Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2022.3148033
 DOI: 10.1109/JSTARS.2022.3148033
 BibTeX: Download
- Sommer, C., Seehaus, T., Glazovsky, A., & Braun, M. (2022). Brief communication: Increased glacier mass loss in the Russian High Arctic (2010-2017). Cryosphere, 16(1), 35-42. https://doi.org/10.5194/tc-16-35-2022
 DOI: 10.5194/tc-16-35-2022
 BibTeX: Download
2021
- Davari, A., Islam, S., Seehaus, T., Hartmann, A., Braun, M., Maier, A., & Christlein, V. (2021). On Mathews Correlation Coefficient and Improved Distance Map Loss for Automatic Glacier Calving Front Segmentation in SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 1-12. https://doi.org/10.1109/TGRS.2021.3115883
 DOI: 10.1109/TGRS.2021.3115883
 URL: https://arxiv.org/abs/2102.08312
 BibTeX: Download
- Friedl, P., Seehaus, T., & Braun, M. (2021). Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data. Earth System Science Data, 13, 4653-4675. https://doi.org/10.5194/essd-13-4653-2021
 DOI: 10.5194/essd-13-4653-2021
 BibTeX: Download
- Rounce, D.R., Hock, R., McNabb, R.W., Millan, R., Sommer, C., Braun, M.,... Shean, D.E. (2021). Distributed Global Debris Thickness Estimates Reveal Debris Significantly Impacts Glacier Mass Balance. Geophysical Research Letters, 48(8). https://doi.org/10.1029/2020GL091311
 DOI: 10.1029/2020GL091311
 BibTeX: Download
- Shahateet, K., Seehaus, T., Navarro, F., Sommer, C., & Braun, M. (2021). Geodetic Mass Balance of the South Shetland Islands Ice Caps, Antarctica, from Differencing TanDEM-X DEMs. Remote Sensing, 13, 3408. https://doi.org/10.3390/rs13173408
 DOI: 10.3390/rs13173408
 BibTeX: Download
- Sochor, L., Seehaus, T., & Braun, M. (2021). Increased Ice Thinning over Svalbard measured by ICESat/ICESat-2 Laser Altimetry. Remote Sensing, 13(11). https://doi.org/10.3390/rs13112089
 DOI: 10.3390/rs13112089
 URL: https://www.mdpi.com/2072-4292/13/11/2089
 BibTeX: Download
2020
- Farías Barahona, D., Ayala, Á., Bravo, C., Vivero, S., Seehaus, T., Vijay, S.,... Braun, M. (2020). 60 years of glacier elevation and mass changes in the Maipo River Basin, central Andes of Chile. Remote Sensing, 12(10). https://doi.org/10.3390/rs12101658
 DOI: 10.3390/rs12101658
 BibTeX: Download
- Farías Barahona, D., Sommer, C., Sauter, T., Bannister, D., Seehaus, T., Malz, P.,... Braun, M. (2020). Detailed quantification of glacier elevation and mass changes in South Georgia. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab6b32
 DOI: 10.1088/1748-9326/ab6b32
 BibTeX: Download
- Lippl, S., Blindow, N., Fürst, J., Marinsek, S., Seehaus, T., & Braun, M. (2020). Uncertainty Assessment of Ice Discharge Using GPR-Derived Ice Thickness from Gourdon Glacier, Antarctic Peninsula. Geosciences, 10, 12. https://doi.org/10.3390/geosciences10010012
 DOI: 10.3390/geosciences10010012
 URL: https://www.mdpi.com/2076-3263/10/1/12
 BibTeX: Download
- Seehaus, T., Malz, P., Sommer, C., Soruco, A., Rabatel, A., & Braun, M. (2020). Mass balance and area changes of glaciers in the Cordillera Real and Tres Cruces, Bolivia, between 2000 and 2016. Journal of Glaciology, 1-13. https://doi.org/10.1017/jog.2019.94
 DOI: 10.1017/jog.2019.94
 BibTeX: Download
- Seehaus, T., Morgenshtern, V., Hübner, F., Bänsch, E., & Braun, M. (2020). Novel Techniques for Void Filling in Glacier Elevation Change Data Sets. Remote Sensing, 12, 3917. https://doi.org/10.3390/rs12233917
 DOI: 10.3390/rs12233917
 BibTeX: Download
- Sommer, C., Malz, P., Seehaus, T., Lippl, S., Zemp, M., & Braun, M. (2020). Rapid glacier retreat and downwasting throughout the European Alps in the early 21st century. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16818-0
 DOI: 10.1038/s41467-020-16818-0
 BibTeX: Download
2019
- Braun, M., Malz, P., Sommer, C., Farías Barahona, D., Sauter, T., Casassa, G.,... Seehaus, T. (2019). Constraining glacier elevation and mass changes in South America. Nature Climate Change, 9(2), 130–136. https://doi.org/10.1038/s41558-018-0375-7
 DOI: 10.1038/s41558-018-0375-7
 URL: https://www.nature.com/articles/s41558-018-0375-7?WT.feed_name=subjects_climate-sciences
 BibTeX: Download
- Farías Barahona, D., Vivero, S., Casassa, G., Schaefer, M., Burger, F., Seehaus, T.,... Braun, M. (2019). Geodetic Mass Balances and Area Changes of Echaurren Norte Glacier (Central Andes, Chile) between 1955 and 2015. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030260
 DOI: 10.3390/rs11030260
 URL: https://www.mdpi.com/2072-4292/11/3/260
 BibTeX: Download
- Lippl, S., Friedl, P., Kittel, C., Marinsek, S., Seehaus, T., & Braun, M. (2019). Spatial and Temporal Variability of Glacier Surface Velocities and Outlet Areas on James Ross Island, Northern Antarctic Peninsula. Geosciences, 9, 1-34. https://doi.org/10.3390/geosciences9090374
 DOI: 10.3390/geosciences9090374
 URL: https://www.mdpi.com/2076-3263/9/9/374
 BibTeX: Download
- Seehaus, T., Malz, P., Sommer, C., Lippl, S., Cochachin, A., & Braun, M. (2019). Changes of the tropical glaciers throughout Peru between 2000 and 2016 - Mass balance and area fluctuations. Cryosphere, 13(10), 2537-2556. https://doi.org/10.5194/tc-13-2537-2019
 DOI: 10.5194/tc-13-2537-2019
 BibTeX: Download
2018
- Friedl, P., Seehaus, T., Wendt, A., Braun, M., & Hoeppner, K. (2018). Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula. Cryosphere. https://doi.org/10.5194/tc-12-1347-2018
 DOI: 10.5194/tc-12-1347-2018
 BibTeX: Download
- Fürst, J., Navarro, F.J., Gillet-Chaulet, F., Huss, M., Moholdt, G., Fettweis, X.,... Braun, M. (2018). The ice‐free topography of Svalbard. Geophysical Research Letters, 45(21), 11760-11769. https://doi.org/10.1029/2018GL079734
 DOI: 10.1029/2018GL079734
 URL: https://agupubs.onlinelibrary.wiley.com/action/showCitFormats?doi=10.1029/2018GL079734
 BibTeX: Download
- Seehaus, T., Cook, A., Silva, A., & Braun, M. (2018). Changes in glacier dynamics in the northern Antarctic Peninsula since 1985. Cryosphere, 12(2), 577-594. https://doi.org/10.5194/tc-12-577-2018
 DOI: 10.5194/tc-12-577-2018
 BibTeX: Download
2017
- Fürst, J., Gillet-Chaulet, F., Benham, T., Dowdeswell, J., Grabiec, M., Navarro, F.J.,... Braun, M. (2017). Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard. Cryosphere, 11(5), 2003-2032. https://doi.org/10.5194/tc-11-2003-2017
 DOI: 10.5194/tc-11-2003-2017
 BibTeX: Download
2016
- Seehaus, T., Marinsek, S., Skvarca, P., van Wessem, J.M., Reijmer, C., Seco, J.L., & Braun, M. (2016). Dynamic response of Sjögren inlet glaciers, Antarctic Peninsula, to ice shelf breakup derived from multi-mission remote sensing time series. Frontiers of Earth Science, 4. https://doi.org/10.3389/feart.2016.00066
 DOI: 10.3389/feart.2016.00066
 BibTeX: Download
2015
- Seehaus, T., Marinsek, S., Helm, V., Skvarca, P., & Braun, M. (2015). Changes in ice dynamics, elevation and mass discharge of Dinsmoor-Bombardier-Edgeworth glacier system, Antarctic Peninsula. Earth and Planetary Science Letters, 427, 125-135. https://doi.org/10.1016/j.epsl.2015.06.047
 DOI: 10.1016/j.epsl.2015.06.047
 BibTeX: Download
